检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Science and Computing Technology, Central South University [2]School of Sciences, Donghua University [3]Department of Mathematics, Shanghai University
出 处:《Acta Mathematica Scientia》2011年第1期221-228,共8页数学物理学报(B辑英文版)
基 金:supported by the National Natural Science Foundation (11071258, 60874083, 10872119, 10901164)
摘 要:In this article, we focus on discussing the degree distribution of the DMS model from the perspective of probability. On the basis of the concept and technique of first-passage probability in Markov theory, we provide a rigorous proof for existence of the steady-state degree distribution, mathematically re-deriving the exact formula of the distribution. The approach based on Markov chain theory is universal and performs well in a large class of growing networks.In this article, we focus on discussing the degree distribution of the DMS model from the perspective of probability. On the basis of the concept and technique of first-passage probability in Markov theory, we provide a rigorous proof for existence of the steady-state degree distribution, mathematically re-deriving the exact formula of the distribution. The approach based on Markov chain theory is universal and performs well in a large class of growing networks.
关 键 词:Growing networks preferential attachment power law
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70