BOUNDEDNESS OF DYADIC DERIVATIVE AND CESARO MEAN OPERATOR ON SOME B-VALUED MARTINGALE SPACES  被引量:1

BOUNDEDNESS OF DYADIC DERIVATIVE AND CESARO MEAN OPERATOR ON SOME B-VALUED MARTINGALE SPACES

在线阅读下载全文

作  者:陈丽红 刘培德 

机构地区:[1]College of Science, Wuhan Textile University [2]School of Mathematics and Statistics, Wuhan University

出  处:《Acta Mathematica Scientia》2011年第1期268-280,共13页数学物理学报(B辑英文版)

基  金:supported by the Nation Natural Science Foundation of China(10671147);Wuhan University of Science and Engineering under grant (093877)

摘  要:In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα, pLα, p H#α, pKr to Lα (0 α ∞), respectively. The facts show that it depends on the geometrical properties of the Banach space.In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα, pLα, p H#α, pKr to Lα (0 α ∞), respectively. The facts show that it depends on the geometrical properties of the Banach space.

关 键 词:B-valued martingale martingale space dyadic derivative dyadic integral 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象