检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《功能材料》2011年第B02期156-159,共4页Journal of Functional Materials
基 金:福建省自然科学基金资助项目(2010J01007);集美大学潘金龙基金资助项目(ZC2010018)
摘 要:通过有限元方法对尖劈形磁场中磁流体磁性微粒所受的磁场力进行了数值分析,分别给出了磁场气隙处磁通量和磁场强度随不同气隙宽度和夹角的变化规律。在此基础上,利用虚位移法和麦克斯韦应力张量法计算磁流体磁性微粒在气隙上方所受的磁场力。结果表明,随着气隙宽度的减小,磁通量、磁场强度和磁场力明显增加;随着气隙夹角的增加,磁通量、磁场强度和磁场力首先呈现增加的变化规律,在夹角达到0.61°时,三者开始逐渐降低。以上研究结果为形成磁流体悬浮的磁场设计提供了理论依据。In this study, the finite element method is used to numerically simulate magnetic force aeting on the magnetic particles in magnetorheological fluid under wedge-like magnetic field. The relation curves between flux and air gap width, magnetic field intensity and air gap width, flux and air gap angle, rnagnetic field intensity and air gap angle, has been given. The magnetic force acting on the magnetic particles in magnetorheological fluid has been calculated with virtual work method and Maxwell stress tensor method. Study results show that the flux, magnetic field intensity and magnetic force can be changed with air gap size. the flux, magnetic field intensity and magnetic force increase as the air gap width decrease. The flux, magnetic field intensity and magnetic force increase as the air gap angle increase, when the angle reached 0.61°, they began to decrease. The results provide a theoretical basis for the magnetic field design to format magnetorheological fluid suspension.
分 类 号:TB381[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.85.192