基于SVD和Toeplitz的高效DOA估计算法  被引量:3

A New and Efficient TSVD Algorithm for Estimating DOA(Direction of Arrival)

在线阅读下载全文

作  者:陈绍炜[1] 魏盈盈[1] 冯晓毅[1] 

机构地区:[1]西北工业大学电子信息学院,陕西西安710129

出  处:《西北工业大学学报》2010年第6期883-886,共4页Journal of Northwestern Polytechnical University

基  金:航空科学基金(2008ZC53030)资助

摘  要:文章通过对SVD和Toeplitz算法的研究,针对空间谱估计中的难点问题即相干信号的DOA估计,采用一种新的高效算法,即对信号协方差矩阵进行特征分解,利用最大特征向量构建1个具有Toeplitz性质的新矩阵,最后利用奇异值分解得到信号的波达方向。仿真实验证明,在低信噪比情况下(-10 dB),SVD算法已基本失效,Toeplitz算法误差达2°,而新算法的估计误差几乎为0。Aim.The introduction of the full paper reviews some references and then proposes our TSVD algorithm,which combines adroitly the SVD(singular value decomposition) algorithm with the Toeplitz algorithm.Sections 1 through 4 explain our TSVD algorithm.Section 2 briefs the SVD algorithm.Section 3 briefs the Toeplitz algorithm.The core of section 4 consists of:(1) we decompose the eigenvector of the coherent signal covariance matrix and obtain its maximum eigenvector value,with which we reconstruct a new matrix that possesses the properties of the Toeplitz algorithm;the new matrix is given in eq.(12);(2) we decompose the singular value of the new matrix;the minimum eigenvector value,corresponding to the small singular values,constitutes noise subspace,while the maximum eigenvector value,corresponding to the large singular values,constitutes signal subspace;(3) we utilize eq.(8) in section 2 to search for the spectral peak,thus estimating the DOA of the incident signal.Section 5 simulates our TSVD algorithm with two numerical examples;the simulation results,presented in Figs.1 through 4,and their analysis show preliminarily that,compared with the conventional SVD and Toeplitz algorithms,our new algorithm produces more precise and stable estimations: when SNR(signal to noise ratio) is-10 dB,the SVD algorithm does not work,the estimation error of the Toeplitz algorithm is up to 20,but the estimation error of our new TSVD algorithm is close to 0.

关 键 词:波达方向 相干信号 奇异值分解 低信噪比 

分 类 号:TN911.4[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象