检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学工商管理学院
出 处:《统计与决策》2010年第23期42-45,共4页Statistics & Decision
基 金:国家自然科学基金资助项目(70771067)
摘 要:文章运用消除趋势波动分析(DFA)方法,计算了四川省工业增加值季度数据的标度指数,该指数表明四川省工业增加值的时间序列值具有长程相关特性,其预测模型有较好的拟合效果。在此基础上根据自组织数据挖掘的理论与方法,提出了自组织组合预测模型。模型预测结果及与ARIMA、GMDH自回归、SPSS曲线估计等三个单项预测模型及最优线性组合、人工神经网络组合等常用的组合预测模型的对比表明,自组织组合预测模型不仅改善了对数据样本的拟合精度,而且显著提高了模型的预测能力。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229