机构地区:[1]School of Civil Engineering and Mechanics,Huazhong University of Science and Technology [2]Hubei Provincial Key Laboratory of Control Structure,Huazhong University of Science and Technology
出 处:《Journal of Central South University》2010年第6期1336-1343,共8页中南大学学报(英文版)
基 金:Project(50778077) supported by the National Natural Science Foundation of China;Project(50925828) supported by the National Science Foundation for Distinguished Young Scholars of China
摘 要:The behavior of viscous fluid damper applied in coupling structures subjected to near-fault earthquake was studied.The structural nonlinearity was characterized by Bouc-Wen model and several near-fault ground motions were simulated by the combination of a recorded earthquake(background ground motion) with equivalent velocity pulses that possess near-fault features.Extensive parametric studies were carried out to find the appropriate damping coefficient.Performances of viscous fluid dampers were demonstrated by the relationship between the force and displacement,the maximal damper force and stroke.The control performances were demonstrated in terms of the response reductions of adjacent structures.The results show that the dynamic responses of adjacent structures are mitigated greatly.Proper damping coefficients of connecting fluid dampers have a small difference,while adjacent structures under different near-fault ground motions with the same peak acceleration.The maximum force of damper is about 0.8 MN,and the maximum damper stroke is about ±550 mm.Satisfied viscous fluid dampers can be produced according to the current manufacturing skills.The behavior of viscous fluid damper applied in coupling structures subjected to near-fault earthquake was studied. The structural nonlinearity was characterized by Bouc-Wen model and several near-fault ground motions were simulated by the combination of a recorded earthquake (background ground motion) with equivalent velocity pulses that possess near-fault features. Extensive parametric studies were carried out to find the appropriate damping coefficient. Performances of viscous fluid dampers were demonstrated by the relationship between the force and displacement, the maximal damper force and stroke. The control performances were demonstrated in terms of the response reductions of adjacent structures. The results show that the dynamic responses of adjacent structures are mitigated greatly. Proper damping coefficients of connecting fluid dampers have a small difference, while adjacent structures under different near-fault ground motions with the same peak acceleration. The maximum force of damper is about 0.8 MN, and the maximum damper stroke is about ±550 mm. Satisfied viscous fluid dampers can be produced according to the current manufacturing skills.
关 键 词:nonlinear viscous fluid DAMPER adjacent structure near-fault earthquake seismic response
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...