检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hong WANG Gang ZHOU Xuejun SHAO
机构地区:[1]State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China. [2]State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China. [3]State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China.
出 处:《International Journal of Sediment Research》2010年第4期380-390,共11页国际泥沙研究(英文版)
基 金:Financial support from China’s National Natural Science Foundation (No. 50879042, 50979043)
摘 要:This paper presents simulated channel patterns for various scenarios in a conceptual alluvial valley by an improved two-dimensional (2-D) mathematical model described in the companion paper. Starting from the same initial channel, different channel patterns have been simulated over a real time period of 250 days for varied boundary and initial conditions, including the inlet water discharge and sediment load, initial valley slope, and erodibility of river banks. Impacts of these control factors are discussed, in terms of the longitudinal bottom profiles of simulated fluvial channels, the geometry of channel cross sections, and the water surface profiles in the conceptual river valley. Results suggest that the upper and lower parts of the same channel may have different planforms because the sediment transport conditions of the two parts differ greatly. Simulated causal relationship between control variables and channel patterns agrees qualitatively with known channel pattern theories.This paper presents simulated channel patterns for various scenarios in a conceptual alluvial valley by an improved two-dimensional (2-D) mathematical model described in the companion paper. Starting from the same initial channel, different channel patterns have been simulated over a real time period of 250 days for varied boundary and initial conditions, including the inlet water discharge and sediment load, initial valley slope, and erodibility of river banks. Impacts of these control factors are discussed, in terms of the longitudinal bottom profiles of simulated fluvial channels, the geometry of channel cross sections, and the water surface profiles in the conceptual river valley. Results suggest that the upper and lower parts of the same channel may have different planforms because the sediment transport conditions of the two parts differ greatly. Simulated causal relationship between control variables and channel patterns agrees qualitatively with known channel pattern theories.
关 键 词:Channel pattern changes Numerical simulation Resistance to bank erosion Sediment transport Braided channel
分 类 号:TV663.9[水利工程—水利水电工程] TP3-05[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222