用分子拓扑参数预估多硝基芳香族化合物的撞击感度  被引量:4

Predication on Impact Sensitivity of Polynitroaromatic Compounds using Principal Component Regression

在线阅读下载全文

作  者:杜军良[1,2] 舒远杰[2] 周阳[2] 罗娅君[1] 胡晓黎[1] 边清泉[1] 

机构地区:[1]绵阳师范学院化学与化学工程系,四川绵阳621000 [2]中国工程物理研究院化工材料研究所,四川绵阳621900

出  处:《火炸药学报》2010年第6期5-10,共6页Chinese Journal of Explosives & Propellants

基  金:国家自然科学基金-中物院NSAF联合基金重点项目(No.10576030);中俄国际合作基金(No.10610194)资助

摘  要:引入主成分回归研究了36种多硝基芳香族化合物(PNAC)分子的撞击感度。在DFT-B3LYP/6-311+G(d,p)水平上对这些炸药分子进行了分子优化和频率振动分析。结合炸药分子的拓扑结构参数和所得的量化结构参数,最终确定硝基个数、氨基个数、芳香性NICS(1)、最长C-NO2键键长、HOMO以及α-C-H(0、1)6个参数与撞击感度(lgH50)具有较好的相关性。以这6个参数作为主成分回归的输入参数构建模型,得到测试集的决定系数R2和交叉验证系数Radj2分别为0.97和0.89,优于由氧平衡指数确定的传统模型的0.91和0.33。得出主成分回归是一种研究撞击感度的有效方法。A method was introduced for predicting the impact sensitivity of thirty-six polynitroaromatic compounds(PNACs) by principal component regression(PCR).Geometry optimizations and frequency calculations were carried out for 36 PNACs molecules by means of density functional theory(DFT) at the DFT-6-311+G(d,p) level.Combining with the topological parameters and the quantum-chemical parameters,six molecular descriptors close related to lgH50,including the numbers of nitro group and amido group,aromaticity index NICS(1),the longest C-NO2 bondlength,HOMO(Highest Occupied Molecular Orbital),indicator of-CH inα(0 or 1) were selected.The PCR with these descriptors was established to predict the impact sensitivity of PNACs.The predicted data of the PCR were compared with experimental results and those of traditional models established by the oxygen balace index(OB100).Results show that the coefficient of determination(R2) and Cross Validation of PCR are 0.97 and 0.89,respectively,which of the traditional models is 0.91 and 0.33.The PCR is an efficient tool for predicting impact sensitivity of PNACs.

关 键 词:材料科学 主成分回归 撞击感度 多硝基芳香族化合物 量子化学 

分 类 号:TJ55[兵器科学与技术—军事化学与烟火技术] O64[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象