新的基于混沌搜索的组优化算法  被引量:6

New group search optimizer algorithm based on chaotic searching

在线阅读下载全文

作  者:方振国[1] 陈得宝[1] 

机构地区:[1]淮北师范大学物理与电子信息学院,安徽淮北235000

出  处:《计算机应用》2011年第3期657-659,673,共4页journal of Computer Applications

基  金:安徽省自然科学基金资助项目(090412070);高等学校省级优秀青年人才基金重点资助项目(2009SQRZ088ZD)

摘  要:为提高组搜索优化(GSO)算法的性能,结合混沌方法的全局搜索特性,提出一种新的基于混沌搜索的组搜索优化(CGSO)算法。此方法中,生产者利用混沌搜索方法不断寻找较好的位置;占领者结合当前生产者的位置和自己运动到目前为止的最好位置对自己当前的位置进行更新;徘徊者采用混沌变异方法探索新的位置。该算法运用Logistic映射的初值敏感性扩大搜索范围,利用其全局遍历性进行位置搜索,有效地提高了算法的全局收敛性。采用CGSO、GSO算法对四个典型的函数优化问题进行了仿真实验,仿真结果验证了方法的有效性。To improve the performance of Group Search Optimizer (GSO), a new group search optimizer algorithm based on Chaotic Group Search Optimizer (CGSO) in combination with the global searching characteristic of the chaos method was proposed in the paper. In the method, the good position of producer was updated by chaotic searching, the new position of scrounger was determined by the position of producer and the best position which it had been achieved so far, and the new position of rangers was achieved by chaotic mutation. The global convergent performance of GSO was improved by using the initial sensitivity of the Logistic map to expand the scope of the search and by employing the global ergodicity to search the positions. Four function optimization problems were simulated by CGSO and GSO. The experimental results indicate that CGSO is more effective than the others.

关 键 词:LOGISTIC映射 混沌优化 组搜索优化 混沌组搜索优化 

分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象