检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Computer Science and Technology, Tianjin University [2]National Astronomical Observatories, Chinese Academy of Sciences
出 处:《Transactions of Tianjin University》2011年第1期62-67,共6页天津大学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (No.10978016);Natural Science Foundation of Tianjin (No. 08JCZDJC19700);Key Technologies Research and Development Program of Tianjin (No.09ZCKFGX00400)
摘 要:Astronomical cross-matching is a basic method for aggregating the observational data of different wavelengths. By data aggregation, the properties of astronomical objects can be understood comprehensively. Aiming at decreasing the time consumed on I/O operations, several improved methods are introduced, including a processing flow based on the boundary growing model, which can reduce the database query operations; a concept of the biggest growing block and its determination which can improve the performance of task partition and resolve data-sparse problem; and a fast bitwise algorithm to compute the index numbers of the neighboring blocks, which is a significant efficiency guarantee. Experiments show that the methods can effectively speed up cross-matching on both sparse datasets and high-density datasets.Astronomical cross-matching is a basic method for aggregating the observational data of different wavelengths. By data aggregation, the properties of astronomical objects can be understood comprehensively. Aiming at decreasing the time consumed on I/O operations, several improved methods are introduced, including a processing flow based on the boundary growing model, which can reduce the database query operations; a concept of the biggest growing block and its determination which can improve the performance of task partition and resolve data-sparse problem; and a fast bitwise algorithm to compute the index numbers of the neighboring blocks, which is a significant efficiency guarantee. Experiments show that the methods can effectively speed up cross-matching on both sparse datasets and high-density datasets.
关 键 词:astronomical cross-matching boundary growing model HEALPix task partition data-sparse problem
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229