检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学:信息科学》2011年第1期66-76,共11页Scientia Sinica(Informationis)
基 金:国家自然科学基金(批准号:10771129)资助项目
摘 要:文中以满足第一及第二无限分配律的完备格为工具,建立了格值模态命题逻辑的语义理论,并指出这种语义是经典模态命题逻辑语义理论及[0,1]值模态命题逻辑语义理论的共同推广.给出了QMR0代数的定义,并分别以Boole代数及QMR0代数为背景构建了Boole型格值模态命题逻辑系统B及QMR0型格值模态命题逻辑系统QML*,并证明了系统B及系统QML*的完备性.Based on the concept of the complete lattice satisfying the first and second infinite distributive laws,the present paper introduces the semantics of the lattice-valued modal propositional logic.It is pointed out that this semantics generalizes the semantics of both classical modal propositional logic and[0,1]-valued modal propositional logic.The definition of the QMR0-algebra is proposed,and both the Boole-typed lattice-valued modal propositional logic system B and the QMR0-typed lattice-valued modal propositional logic system QML* are constructed by use of Boole-algebras and QMR0-algebras,respectively.The main results of the paper are the completeness theorems of both the system B and QML*.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.49.72