检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子信息学院,陕西西安710129
出 处:《计算机工程与科学》2011年第2期112-117,共6页Computer Engineering & Science
基 金:2009年西北工业大学研究生创新基金(Z200937);敦煌研究院"数字敦煌"项目的支持
摘 要:针对传统的图像特征匹配算法数据量大、计算耗时长的缺点,本文提出了一种基于快速鲁棒特征(SURF)的图像配准算法。SURF算法作为一种新的特征提取算法,在独特性、鲁棒性等方面均超过了其它方法,并在计算效率上具有明显的优势。该算法在积分图像的基础上进行快速计算,通过快速Hessian检测子来检测特征点。对于每个特征点,通过计算哈尔小波变换来确定特征点的主方向,并确定特征描述子,再根据Hessian矩阵迹的正负性和最近邻与次近邻比值的方法相结合获取匹配点,并用改进的RANSAC算法剔除伪匹配点以确保匹配的有效性。实验表明,该算法既能满足匹配准确性的要求,又具有计算量小、计算速度快的优点。With the shortcomings of large data amount and long time consuming in the conventional image feature matching algorithms, a new algorithm based on SURF for image registration is presented in this paper. SURF is a new feature extraction algorithm which approximates or even outperforms other schemes with respect to distinctiveness, and robustness. And it is much faster than the other similar ones. It is fast computed based on the integral image and through the FastHessian detector, the feature points are extracted. For each feature point, the dominant orientation is assigned by computing the Haarwavelet responses, and then the descriptor is generated. Image matching is made based on the sign of the trace of the Hessian matrix and the ratios of the closest neighbor and the second closest neighbor, and an improved RANSAC technique is applied to eliminate outliers to ensure the effectiveness of the matched pairs. The experimental result shows that this algorithm can not only meet the requirement of accuracy, but also has a small data amount and fast speed for image registration.
关 键 词:图像匹配 SURF 积分图像 HESSIAN矩阵 尺度空间 特征点描述子
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3