标准模型下可证明安全的分级身份签名方案  被引量:2

Provable Secure Hierarchical Identity Based Signature Scheme in the Standard Model

在线阅读下载全文

作  者:杨旸[1] 胡予濮[1] 张乐友[2] 孙春辉[1] 

机构地区:[1]西安电子科技大学通信工程学院,西安710071 [2]西安电子科技大学理学院,西安710071

出  处:《西安交通大学学报》2011年第2期27-33,共7页Journal of Xi'an Jiaotong University

基  金:国家自然科学基金资助项目(60970119;60803149;60833008;61072067);国家重点基础研究发展规划资助项目(2007CB311201)

摘  要:为使分级身份签名方案能够获得高安全性并同时缩短签名长度、降低计算量,提出一种标准模型下可证明安全的分级身份签名方案.现有的方案通常在签名过程中将消息作为一个整体进行运算,而文中方案则对消息进行分段处理,使得方案不仅具有效率上的优势,同时在相同的效率级别上,安全性明显优于其他现有方案.方案的安全性优势体现在:安全性证明基于完全身份的标准模型,安全性规约于计算Diffie-Hellman(CDH)假设,并且CDH假设的安全性明显优于其他的困难假设而仅次于离散对数问题,因此方案具有较强的安全性.方案的效率优势体现在:签名长度为常数,验证过程只需要进行3次双线性对运算,用户私钥长度随着级数的增加而减少.性能分析和安全性分析表明,文中方案的安全性和效率均优于现有方案.Aiming at the intrinsic problems in hierarchical identity based signature (HIBS) schemes, such as enhancing the security, shortening the signature length, and reducing the com- putational costs, a novel hierarchical identity based signature scheme is proposed. The available schemes always handle the message as an entirety in the signature process; while our scheme processes the message as segments so that the scheme is not only efficient but also achieves higher security level. The suggested scheme is more secure than the existing schemes since it is proved secure in the standard model over full identity adaptive chosen message attack, and its security is reduced to computational Diffie-Hellman (CDH) assumption. The hardness of CDH assumption is superior to the other assumptions except the discrete logarithm problem. The new scheme has some efficiency advantages over the available schemes: the size of the signature is a constant, verification requires only three bilinear pairing operations, and the private keys size shrinks as the identity depth increases. The efficiency and security analysis shows that the proposed scheme is more secure and efficient compared with the existing HIBS schemes.

关 键 词:标准模型 可证明安全 分级身份 签名 双线性映射 公钥密码学 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象