层次支持向量机在数字电路故障诊断中的应用  

Hierarchical Support Vector Machine and Its Application in Fault Diagnosis of Digital Circuit

在线阅读下载全文

作  者:张岐龙[1] 单甘霖[1] 张子宁[1] 刘东平[1] 

机构地区:[1]军械工程学院,石家庄050003

出  处:《电光与控制》2011年第2期89-92,96,共5页Electronics Optics & Control

基  金:国防预研基金(513270203)

摘  要:针对在数字电路故障诊断过程中存在的样本不平衡度严重的问题,采用层次式支持向量机实现对其故障诊断,通过考虑各类样本的数据量来构造以支持向量为叶节点的树,该方法可有效地解决样本不平衡所带来的问题,同时能够减少计算SVM分类器的个数,提高了训练和诊断速度及准确率。针对故障样本集不可能覆盖所有故障状态而出现的未知故障状态的问题,提出利用分类概率作为标准来判断样本是否为未知故障,实现了对未知故障的判定和对故障分类器的扩展。实验验证表明,本文提出的方法能够解决此类问题,取得较好的效果。Considering the problems as unbalance training data and fault classifier extension in fault diagnosis of digital circuit, a new method was proposed and verified for the fault diagnosis. Firstly, exhaustive method was used to stimulus the circuits, and the samples of normal state and fault states were obtained after preprocessing. The hierarchical Support Vector Machine (SVM) using the length of samples as eriterion was adopted to diagnose the faults of digital circuits. It can alleviate the problems brought by the unbalance training data, and the training speed and accuracy were improved as well. Since the fault samples can not cover all the faults of the circuit due to the diversity of faults of one circuit, we proposed to use the classification probability as the criterion to judge whether the sample was an unknown fault sample. The results of the experiment shows that the method proposed can solve the problems in digital circuit fault diagnosis.

关 键 词:数字电路 故障诊断 层次式支持向量机 未知故障 

分 类 号:V274.1[航空宇航科学与技术—飞行器设计] TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象