CFG桩复合地基承载力预测的高斯过程模型  

Gaussian process model for forecasting bearing capacity of composite foundation with CFG pole

在线阅读下载全文

作  者:苏国韶[1] 张研[1] 燕柳斌[1] 

机构地区:[1]广西大学土木建筑工程学院,南宁530004

出  处:《计算机工程与应用》2011年第4期236-238,共3页Computer Engineering and Applications

基  金:国家自然科学基金(No.50809017);中国博士后科学基金(No.20080440812)~~

摘  要:高斯过程是新近发展的一种机器学习方法,对处理复杂非线性问题具有很好的适应性。针对CFG桩复合地基承载力难以合理确定的问题,提出了基于高斯过程的CFG桩复合地基承载力预测模型。该模型通过对少量训练样本的学习,就可以建立CFG桩复合地基承载力与其影响因素之间的复杂非线性映射关系。将模型应用于工程实例,研究结果表明,CFG桩复合地基承载力预测的高斯过程模型是科学可行的。高斯过程模型的预测精度高,适用性强,具有算法参数自适应化的特点且易于实现,具有良好的工程应用前景。Gaussian Process(GP) is a newly developed machine learning technology and has become a power tool for solving highly nonlinear problems.Aiming at the fact that it is still difficult to reasonably determine the bearing capacity of composite foundation with Cement-flyash-gravel(CFG) pile,the model based on GP is proposed for forecasting bearing capacity of composite foundation with CFG pile.According to few training samples,the nonlinear mapping relationship between bearing capacity of composite foundation with CFG pile and influencing factors is established by GP model.GP model is applied to a real engineering.The results of case study show that GP method is feasible,effective and simple to implement.It has merits of self-adaptive parameters determination and excellent capacity for solving non-linear small samples problems.The good performance of GP model makes it very attractive for application in the foundation engineering.

关 键 词:水泥粉煤灰碎石(CFG)桩 地基承载力 高斯过程 机器学习 预测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象