检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
出 处:《计算机工程》2011年第4期37-39,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60773100);河北省教育厅科研计划基金资助项目(2006143)
摘 要:空间数据集中离群数据与正常数据之间的非空间属性值相差较大。针对该情况,提出一种基于K-最邻近(KNN)图的空间离群点挖掘算法。该算法通过所有对象的K近邻关系构造KNN图,将相邻对象非空间属性值的差作为2个对象点间的边权值,利用裁边策略去掉权值较高的边,从而识别出空间离群点和离群区域。实验结果表明,该算法的时间性能优于POD算法。Aiming at the problem that the non-spatial attribute differences between outlier and normal data are very large, this paper propose a spatial outlier mining algorithm based on K-Nearest Neighbor(KNN) graph. It constructs a KNN graph based on K neighbor relationship in spatial domain, assigns the non-spatial attribute differences as edge weights, and cuts high-weight edges to identify spatial outliers and outlier region. Experimental result shows that time performance of this algorithm is superior to POD algorithm.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.159.3