机构地区:[1]National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China [2]College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China [3]Opening Lab of Genetic Improvement of Agricultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
出 处:《Journal of Genetics and Genomics》2011年第1期39-45,共7页遗传学报(英文版)
基 金:This research was supported by the National Science Foundation of China(No.31025018);the Ministry of Science and Technology(No.2011CB944600) to W.Jin;by the Ministry of Agriculture("948"program 2008-Z42) to S.Huang
摘 要:Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s. var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s. var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.
关 键 词:CUCUMBER Wild cucumber Satellite repeats Fluorescence in situ hybridization (FISH)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...