Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART  被引量:2

Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART

在线阅读下载全文

作  者:WANG ZiJun CHEN ShengBo JIN LiHua YANG ChunYan 

机构地区:[1]College of Geoexploration Science & Technology, Jilin University, Changchun 130026, China [2]The Second Brigade of Surveying and Mapping, Heilongjiang Bureau of Surveying and Mapping, Harbin 150086, China

出  处:《Science China(Physics,Mechanics & Astronomy)》2011年第2期273-280,共8页中国科学:物理学、力学、天文学(英文版)

基  金:supported by the National High Technology Research and Development Program (Grant No 2006AA12Z102);Graduate Innovation Fund of Jilin University (Grant No20091023)

摘  要:The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY(SCIAMACHY) instrument,launched on the Envisat satellite in March 2002,measures the earthshine radiance,simultaneously from the ultraviolet(UV) to the near infrared(NIR),in the three viewing geometries:nadir,limb,and occultation.These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents.In this paper,stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band.The study employs a new multiplicative algebraic reconstruction technique(MART) coupled with the radiative transfer model SCIATRAN.This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude.Furthermore,it is straightforward to understand,easy to implement and likely to produce stable results.Radiance normalization and wavelength pairing is applied to radiance as an intermediate step,using the wavelengths 525 nm,600 nm and 675 nm.The sensitivity of ozone retrieval by this method to tangent altitude pointing,surface albedo,aerosol and cloud parameters is studied,and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift,and the impact of albedo is limited within 5%.The effect of boundary visibility and cloud parameters can be ignored since their impact is too small.The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km,and with a better accuracy of 5% from 16 to 36 km.The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY(SCIAMACHY) instrument,launched on the Envisat satellite in March 2002,measures the earthshine radiance,simultaneously from the ultraviolet(UV) to the near infrared(NIR),in the three viewing geometries:nadir,limb,and occultation.These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents.In this paper,stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band.The study employs a new multiplicative algebraic reconstruction technique(MART) coupled with the radiative transfer model SCIATRAN.This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude.Furthermore,it is straightforward to understand,easy to implement and likely to produce stable results.Radiance normalization and wavelength pairing is applied to radiance as an intermediate step,using the wavelengths 525 nm,600 nm and 675 nm.The sensitivity of ozone retrieval by this method to tangent altitude pointing,surface albedo,aerosol and cloud parameters is studied,and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift,and the impact of albedo is limited within 5%.The effect of boundary visibility and cloud parameters can be ignored since their impact is too small.The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km,and with a better accuracy of 5% from 16 to 36 km.

关 键 词:SCIAMACHY limb scatter MART radiance normalization wavelength pairing 

分 类 号:P631.4[天文地球—地质矿产勘探] X831[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象