信息散度与梯度角正切相结合的光谱区分方法  被引量:17

Spectral Discrimination Method Information Divergence Combined with Gradient Angle

在线阅读下载全文

作  者:张修宝[1] 袁艳[1] 景娟娟[2,3] 孙成明[1] 王潜[1] 

机构地区:[1]北京航空航天大学精密光机电一体化技术教育部重点实验室,北京100191 [2]中国科学院西安光学与精密机械研究所,陕西西安710119 [3]中国科学院研究生院,北京100049

出  处:《光谱学与光谱分析》2011年第3期853-857,共5页Spectroscopy and Spectral Analysis

基  金:国家重点基础研究发展计划项目(2009CB724005);长江学者和创新团队发展计划项目(IRT0705)资助

摘  要:提出了将光谱信息散度和光谱梯度角正切相结合的光谱区分方法(SID×tan(SGAπ/2)),克服了现有光谱区分方法难以同时兼顾光谱整体形状和局部特征的不足。利用仿真光谱作为输入源,根据时空联合调制干涉成像光谱仪的干涉图获取原理和光谱复原算法,模拟了其在不同最大掺杂比下对失真光谱的复原,并采用不同区分方法分别比较了复原光谱与准确光谱的差异。实验结果表明SID×tan(SGAπ/2)法可以在辨别光谱整体形状相似性的前提下,增强对光谱局部特征差异性的分辨能力。通过对多种区分方法结果的对比,验证了SID×tan(SGAπ/2)法在光谱区分能力上的显著提高。The present paper proposes a spectral discrimination method combining spectral information divergence with spectral gradient angle(SID×tan(SGAπ/2)) which overcomes the shortages of the existing methods which can not take the whole spectral shape and local characteristics into account simultaneously.Using the simulation spectra as input data,according to the interferogram acquirement principle and spectrum recovery algorithm of the temporally and spatially modulated Fourier transform imaging spectrometer(TSMFTIS),we simulated the distortion spectra recovery process of the TMSFTIS in different maximum mix ratio and distinguished the difference between the recovered spectra and the true spectrum by different spectral discrimination methods.The experiment results show that the SID×tan(SGAπ/2) can not only identify the similarity of the whole spectral shapes,but also distinguish local differences of the spectral characteristics.A comparative study was conducted among the different discrimination methods.The results have validated that the SID×tan(SGAπ/2) has a significant improvement in the discriminatory ability.

关 键 词:光谱区分方法 信息散度 梯度角 时空联合调制干涉成像光谱仪 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象