Elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders by analytical method  

Elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders by analytical method

在线阅读下载全文

作  者:M.NIKKHAH F.HONARVAR E.DEHGHAN 

机构地区:[1]Faculty of Mechanical Engineering,K.N.Toosi University of Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2011年第2期189-202,共14页应用数学和力学(英文版)

摘  要:An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson's ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler's equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson's ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler's equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.

关 键 词:functionally graded material elastodynamic solution hollow cylinder power law function 

分 类 号:O343[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象