检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学近代力学系,合肥230026
出 处:《应用数学和力学》2011年第3期324-332,共9页Applied Mathematics and Mechanics
摘 要:提出了一种求解波状游动平板最优运动方式的优化方法.最优化问题表述为固定推力的条件下,使得输入功率最小.由于存在不可见模态,使得该问题具有奇性,用通常的Lagrange乘子法计算得到的可能不是最优解,而是一个鞍点值.为了消除这一奇性,增加了一个关于幅值的不等式约束,并利用逐步二次规划的优化方法求解该问题.将该方法运用到二维和三维的波动板的几个例子上,获得了最优解.A numerical method for optimum motion of an undulatory swimming plate was presented.The optimal problem was stated as minimizing the power input under the condition of fixed thrust.The problem was singular for the invisible modes and the commonly used Lagrange method may not predict an optimum solution but just a saddle point.To eliminate the singularity,an additional amplitude inequality constraint was added to the problem.A numerical optimization code with a sequential quadratic programming method was used to solve the problem.The method was applied to several cases of two-dimensional and three-dimensional undulatory plates' motions and the optimum results were obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15