基于混合量子进化算法的高效节能无线传感器网络路由算法  被引量:5

HQEA-Based Energy-Efficient Routing Algorithm for WSN

在线阅读下载全文

作  者:王翊[1] 范兴刚[1] 王万良[1] 姚晓敏[1] 

机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023

出  处:《传感技术学报》2011年第2期253-258,共6页Chinese Journal of Sensors and Actuators

基  金:国家自然科学基金(61070043);浙江省自然科学基金(Y1080374);浙江省自然科学基金(Y1100611)

摘  要:在无线传感器网络中,层次型路由算法能减少节点能量消耗和延长网络生存周期。因此在LEACH算法和PEGASIS算法的基础上,提出了一种基于混合量子进化算法的高效节能的无线传感器网络路由算法HERA。该算法中把网络分为多个簇,每个簇中的节点连接成为一条多跳通讯链路,并使用混合量子进化算法来得到最优的分簇组链方式,以减少链路的总距离。为进一步减小能量消耗和维持节点能量均衡,采用比较节点剩余能量与目标距离的方式选择簇首,以多跳通讯的形式经过其他簇首将收集的数据传送到基站。仿真结果表明,提出的路由算法与LEACH、PEGASIS相比能显著缩短通信距离,减少和均衡能量消耗,延长网络的寿命,并减少基站变化对网络寿命的影响。In the environment of wireless sensor networks,hierarchical routing algorithms are able to prolong the network lifetime and save the energy consumption.According to LEACH and PEGASIS,this paper proposes a new hierarchical routing algorithm for wireless sensor networks called hybrid QEA-based energy-efficient routing algorithm.This algorithm divides a sensor network into a set of clusters.In each cluster,sensor nodes are arranged in a multi-hop chain topology.In order to reduce the data transmission distance,this algorithm uses the hybrid QEA to establish the best cluster-based multi-chain topology.For the sake of balancing energy dissipation,node's residual energy and its distance from the target are considered as criterions of cluster head election,and each cluster head relays the sensed data of other clusters to the sink.Simulation results demonstrate that compared with LEACH and PEGASIS,this proposed algorithm HERA can shorten total transmission distance significantly,which is also more efficient to save and balance energy of consumption.In the meanwhile it prolongs the living time of the whole network and eliminates the affection of sink's location on the network lifetime.

关 键 词:无线传感器网络 LEACH PEGASIS 量子进化算法 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象