检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伟[1] 陆廷金[2] 荣鹏辉[2] 李青[2] 赵延庆[1]
机构地区:[1]空军工程大学工程学院,西安710038 [2]徐州空军学院,江苏徐州221000
出 处:《电光与控制》2011年第3期61-65,共5页Electronics Optics & Control
基 金:国家博士后基金资助项目(20090451225)
摘 要:针对态势评估中复杂机动事件检测的精度及实时性问题,提出了基于粗糙集-模糊神经网络(RFNN)的事件检测方法,通过粗糙集理论获取数据样本中的最简规则集,然后根据这些规则构造模糊神经网络各层的神经元个数及相关参数初始值,最后用BP算法迭代求出网络的各种参数。仿真结果证明RFNN用于复杂机动事件检测的有效性,同时可以发现其在网络结构和收敛性方面的优势。Considering the requirement to accuracy and real-time performance in complex mobile event detection,a method based on Rough-Fuzzy Neural Network(RFNN) was proposed for event detection.The minimal rules were acquired from data samples by rough set theory.Then,these rules were used for constructing neural cell numbers and relative parameters in fuzzy neural network.Finally,the parameters of network were calculated out by using BP algorithm.Simulation showed the effectiveness of RFNN based complex mobile event detection,and proved that RFNN has superiorities at the aspects of network structure and convergence performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249