一种平面域中三维散乱点的曲面重构方法  被引量:1

A Kind of Surface Reconstruction Method from 3D Scattered Points of General Surface

在线阅读下载全文

作  者:陈丽芳[1] 毛力[2] 林意[1] 

机构地区:[1]江南大学数字媒体学院,江苏无锡214122 [2]江南大学物联网工程学院,江苏无锡214122

出  处:《江南大学学报(自然科学版)》2011年第1期32-36,共5页Joural of Jiangnan University (Natural Science Edition) 

基  金:农业部重点开放实验室基金项目(BZ2009-07)

摘  要:针对已知一般平面域的一些三维散乱点数据,提出采用最小二乘法原理求出拟合曲面的系数,根据误差的需求利用切比雪夫逼近原理对拟合系数进行修正的方法,对三维散乱点数据进行拟合,并以叶片为例,利用CAD软件对拟合数据进行曲面重构。实验数据证明,该方法有效地提高了对三维散乱点的处理速度和拟合精度,在复杂曲面表示、加工等领域有广泛应用。In the paper,base on a number of 3D scattered point data of general surface,a method is presented for using the least square method fitting surface coefficient,and correcting the fitting factor according to the needs of the error and Chebyshev Approximation theory.The paper also presents the use of CAD software to fit the reconstructed data by the example of blade.The experimental data show that the method improves the three-dimensional scattered points of processing speed and precision fitting.The method will have wide application in a complex surface processing and other fields.

关 键 词:三维散乱点 逆向工程 最小二乘法 切比雪夫逼近 曲面重构 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象