检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University [2]Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering,Shanghai University
出 处:《Applied Mathematics and Mechanics(English Edition)》2011年第3期293-300,共8页应用数学和力学(英文版)
基 金:supported by the National Natural Science Foundation of China (No. 10772105);the Shanghai Leading Academic Discipline Project (No. S30106)
摘 要:Motivated by the application of Winkler-like models for the buckling analysis of embedded carbon nanotubes, an orthotropic Winkler-like model is developed to study the buckling behavior of embedded cytoskeletal microtubules within the cytoplasm. Experimental observations of the buckling of embedded cytoskeletal microtubules reveal that embedded microtubules bear a large compressive force as compared with free microtubules. The present theoretical model predicts that embedded microtubules in an elastic medium bear large compressive forces than free microtubules. The estimated critical pressure is in good agreement with the experimental values of the pressure-induced buckling of microtubules. Moreover, due to the mechanical coupling of microtubules with the surrounding elastic medium, the critical buckling force is increased considerably, which well explains the theory that the mechanical coupling of microtubules with an elastic medium increases compressive forces that microtubules can sustain. The model presented in the paper is a good approximation for the buckling analysis of embedded microtubules.Motivated by the application of Winkler-like models for the buckling analysis of embedded carbon nanotubes, an orthotropic Winkler-like model is developed to study the buckling behavior of embedded cytoskeletal microtubules within the cytoplasm. Experimental observations of the buckling of embedded cytoskeletal microtubules reveal that embedded microtubules bear a large compressive force as compared with free microtubules. The present theoretical model predicts that embedded microtubules in an elastic medium bear large compressive forces than free microtubules. The estimated critical pressure is in good agreement with the experimental values of the pressure-induced buckling of microtubules. Moreover, due to the mechanical coupling of microtubules with the surrounding elastic medium, the critical buckling force is increased considerably, which well explains the theory that the mechanical coupling of microtubules with an elastic medium increases compressive forces that microtubules can sustain. The model presented in the paper is a good approximation for the buckling analysis of embedded microtubules.
关 键 词:microtubule buckling orthotropic Winkler-like model elastic medium
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15