一种改进的新颖的粒子群优化算法  被引量:1

Improved novel Particle Swarm Optimization algorithm

在线阅读下载全文

作  者:顾大为[1] 凌君[1] 

机构地区:[1]东北大学自动化研究所,沈阳110004

出  处:《计算机工程与应用》2011年第6期49-51,85,共4页Computer Engineering and Applications

摘  要:针对PSO在寻优过程容易出现"早熟"现象,提出了一种基于Sobol序列的自适应变异PSO算法(SAPSO)。该算法以积分控制粒子群算法(ICPSO)为基础,使用准随机Sobol序列初始化种群个体,并在算法过程中引入基于多样性反馈的Beta分布自适应变异来保持种群的多样性,避免陷入局部最优。仿真结果表明,SAPSO算法在求解复杂优化问题时优势明显,可以有效地避免算法陷入局部最优,在保证收敛速度的同时增强了算法的全局搜索能力。To solve the premature problem of PSO, an improved PSO algorithm with adaptive mutation based on Sobol sequence(SAPSO) is proposed.Based on ICPSO,quasi-random Sobol sequence is introduced to the initialization of the swarm and the adaptive mutation with Beta distribution based on diversity feedback is used to keep the diversity of the population and to avoid the local optimum.The results show the effectiveness of SAPSO solving complicated optimization problems and avoiding the local optimum.The global searching ability is enhanced as well as the convergent speed is guaranteed.

关 键 词:粒子群优化算法 Sobol序列 BETA分布 自适应变异 多样性反馈 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象