Using Digital Elevation Model to Improve Soil pH Prediction in an Alpine Doline  被引量:1

Using Digital Elevation Model to Improve Soil pH Prediction in an Alpine Doline

在线阅读下载全文

作  者:A. CASTRIGNANO G. BUTTAFUOCO R. COMOLLI A. CASTRIGNANO 

机构地区:[1]CRA-Research Unit for Cropping Systems in Dry Environments, Bari 70125 (Italy) [2]CNR Institute for Agricultural and Forest Systems in the Mediterranean, Rende (CS) 87036 (Italy) [3]Department of Environmental Sciences (DISAT), University of Milano-Bieocca, Milano 20126 (Italy)

出  处:《Pedosphere》2011年第2期259-270,共12页土壤圈(英文版)

摘  要:Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations.Among spatial interpolation techniques, geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations. A doline of approximately 15 000 m2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics, to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging. Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging. Further, 110 pits were located using spatial simulated annealing (SSA) method. The interpolation techniques were multi-linear regression analysis (MLR), ordinary kriging (OK), regression kriging (RK), kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc). A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best. RK and KED yielded better results than the more complex CKmc and OK. The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations.

关 键 词:kriging with external drift multi-collocated ordinary cokriging multi-linear regression ordinary kriging regression kriging 

分 类 号:P231.5[天文地球—摄影测量与遥感] S153[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象