检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电子工程系,微波与数字通信国家重点实验室,北京100084
出 处:《清华大学学报(自然科学版)》2011年第1期131-134,共4页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金资助项目(60572081)
摘 要:为了在存储量受限的情况下尽可能提高线性预测编码(linear predictive coding,LPC)系数量化性能,提出了一种基于码本共享算法的分模式多级矢量量化(multi-stagevector quantization,MSVQ)算法。由于LPC参数的分布与清浊音(unvoiced/voiced,U/V)参数相关,该算法对不同U/V对应的LPC参数进行不同量化,然后利用码本共享算法减少存储量需求。实验表明:在相同码率的情况下,该算法较MSVQ平均谱失真(spectrum distortion,SD)降低3.2%,码本大小增加26.7%;较分模式量化(mode-basedquantization,MBQ)平均谱失真升高3.6%,但是码本尺寸下降了92.1%。该算法是MSVQ与MBQ算法的一种折衷,在增加少量存储量的情况下提高了LPC系数的量化性能。A mode based multi-stage vector quantization(MSVQ) algorithm was developed to more efficiently quantize linear predictive coding(LPC) coefficients with constrained storage.Since the distributions of the LPC parameters are related to the unvoiced/voiced(U/V) parameters,the LPC parameters were quantized according to their U/V parameters,with a codebook sharing algorithm used to reduce the storage requirements.Tests show that the average spectrum distortion(SD) of the quantization algorithm is reduced by 3.2% with the storage is increased by 26.7% compared with the MSVQ algorithm,and the average SD increases by 3.6% and the storage decreases by 92.1% when compared with the mode-based quantization(MBQ) algorithm.The current algorithm is a compromise between the MSVQ and the MBQ algorithms to improve the LPC quantization performance with only a small storage increase.
关 键 词:语音编码 低速率 矢量量化 分模式量化 码本共享
分 类 号:TN912.32[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127