简化的分类微粒群算法及其在风电场建模中的应用  被引量:4

Simplified classification PSO and its application in wind farm modeling

在线阅读下载全文

作  者:陈国初[1] 杨维[1,2] 张延迟[1] 徐余法[1] 俞金寿[2] 

机构地区:[1]上海电机学院电气学院,上海200240 [2]华东理工大学信息科学与工程学院,上海200237

出  处:《控制与决策》2011年第3期381-386,392,共7页Control and Decision

基  金:国家自然科学基金项目(70773041);上海市教委重点学科项目(J51901);上海市教委科研创新重点项目(09ZZ211);闵行区-上海电机学院区校合作项目(08Q07).

摘  要:提出一种简化的分类微粒群算法.首先将微粒按适应值的差异划分成较好、普通和较差3类;然后对这3类微粒分别采用3种对应的没有速度项的简化模型进行动态制整,有效地增加了种群的多样性.通过对4种典型测试函数的仿真实验,并与经典PSO和2个目前较为流行的改进PSO进行比较,实验结果表明了所提出的改进算法具有更好的优化性能.将改进算法用于风电场风速概率模型优化的实验结果表明,与传统最小二乘法相比,该方法拟合的Weibull参数精度更高,更具实际参考价值.A simplified classification particle swarm optimization algorithm(PSO) is proposed. At first, particles are divided into three categories, such as the better, ordinary and the worse according to their fitness. Then, three types of simplified models without velocity part in classical particle swarm optimization algorithm are used to adjust these three kinds of classified paticles respectively. The diversity of algorithm is enhanced effectively. Through the simulation experiments with four test functions, compared with the basic PSO and another improved PSO currently, the improved algorithm proposed has better optimization performance. Finally, the improved algorithm is applied to optimize wind probability modeling, and the results show that this method has more accuracy and more practical reference than least-squares method.

关 键 词:微粒群优化算法 简化微粒群优化算法 微粒分类 动态模型 Weibull模型 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象