带形状参数的升二次Bézier曲线  

Elevating Quadratic with Shape Parameter of Bézier Curve

在线阅读下载全文

作  者:姜岳道[1] 白根柱[1] 植物[1] 

机构地区:[1]内蒙古民族大学数学学院,内蒙古通辽028043

出  处:《计算机与现代化》2011年第3期114-116,123,共4页Computer and Modernization

摘  要:首次提出四次Bernstein基函数的一种新扩展——含有一个形状参数的λQ—Bernstein基函数,与以往的基函数相比较,基函数的次数一次性升高两次,且具有四次多项式基函数和带一个形状参数的五次多项式基函数的所有性质,基于该基函数定义λQ—Bézier曲线,并且曲线自身含有形状参数,增加曲线形状的可调性。与含一个参数的五次多项式曲线进行比较,该曲线能更好地逼近所给定的控制多边形。This paper defines several new sixtic polynomial basis functions which are named the λQ—Bernstein basis function and they all have a shape parameter λ for quartic Bernstein basic function.These basis functions have a new feature and the function's degree is elevated secondary once.Above all,these new basis functinons contain all properties of quartic polynomial basis function and the quintic polynomial basis function with a shape parameter.Based on these basis functions,the paper defines λQ—Bézier curve which not only contains a shape parameter λ,but also could improve the adjustability of the new curve.An important property is that the curve could better approximate to control polygon which is given.

关 键 词:BERNSTEIN基函数 λQ—Bézier曲线 升二次 形状参数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象