A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer  

A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer

在线阅读下载全文

作  者:张彩珍 王永顺 汪再兴 

机构地区:[1]School of Electronic and Information Engineering,Lanzhou Jiaotong University

出  处:《Journal of Semiconductors》2011年第3期6-9,共4页半导体学报(英文版)

基  金:Project supported by the Scientific and Technological Development Plan of Lanzhou City of China(No.2009-1-1);the Natural Science Fund of Gansu Province(No.096RJZA091)

摘  要:A new two-step phosphorous diffusion gettering(TSPDG) process using a sacrificial porous silicon layer(PSL) is proposed.Due to a decrease in high temperature time,the TSPDG(PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG(PSL) process under conditions of 900℃/60 min + 700℃/30 min,the effective lifetime of minority carriers in solar-grade(SOG) Si is increased to 14.3 times its original value,and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm2,and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1%to 11.8%,which are much superior to the results achieved by the PDG(PSL) process at 900℃for 90 min.A new two-step phosphorous diffusion gettering(TSPDG) process using a sacrificial porous silicon layer(PSL) is proposed.Due to a decrease in high temperature time,the TSPDG(PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG(PSL) process under conditions of 900℃/60 min + 700℃/30 min,the effective lifetime of minority carriers in solar-grade(SOG) Si is increased to 14.3 times its original value,and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm2,and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1%to 11.8%,which are much superior to the results achieved by the PDG(PSL) process at 900℃for 90 min.

关 键 词:two-step phosphorous diffusion gettering effective lifetime porous silicon layer solar-grade Si 

分 类 号:TN304[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象