Functional magnetic resonance imaging and diffusion tensor tractography of the corticopontocerebellar tract in the human brain  被引量:1

Functional magnetic resonance imaging and diffusion tensor tractography of the corticopontocerebellar tract in the human brain

在线阅读下载全文

作  者:Ji Heon Hong Sung Ho Jang 

机构地区:[1]Department of Physical Medicine and Rehabilitation,College of Medicine,Yeungnam University

出  处:《Neural Regeneration Research》2011年第1期76-80,共5页中国神经再生研究(英文版)

基  金:the National Research Foundation of Korea Grant funded by the Korean Government,No. KRF-2008-314-E00173

摘  要:The anatomical organization of the corticopontocerebellar tract (CPCT) in the human brain remains poorly understood. The present study investigated probabilistic tractography of the CPCT in the human brain using diffusion tensor tractography with functional magnetic resonance imaging. CPCT data was obtained from 14 healthy subjects. CPCT images were obtained from functional magnetic resonance imaging and diffusion tensor tractography, revealing that the CPCT originated from the primary sensorimotor cortex and descended to the pontine nucleus through the corona radiata, the posterior limb of the internal capsule, and the cerebral peduncle. After crossing the pons through the transverse pontine fibers, the CPCT entered the cerebellum via the middle cerebral peduncle. However, some variation was detected in the midbrain (middle cerebral peduncle and/or medial lemniscus) and pons (ventral and/or dorsal transverse pontine fibers). The CPCT was analyzed in 3 dimensions from the cerebral cortex to the cerebellum. These results could be informative for future studies of motor control in the human brain.The anatomical organization of the corticopontocerebellar tract (CPCT) in the human brain remains poorly understood. The present study investigated probabilistic tractography of the CPCT in the human brain using diffusion tensor tractography with functional magnetic resonance imaging. CPCT data was obtained from 14 healthy subjects. CPCT images were obtained from functional magnetic resonance imaging and diffusion tensor tractography, revealing that the CPCT originated from the primary sensorimotor cortex and descended to the pontine nucleus through the corona radiata, the posterior limb of the internal capsule, and the cerebral peduncle. After crossing the pons through the transverse pontine fibers, the CPCT entered the cerebellum via the middle cerebral peduncle. However, some variation was detected in the midbrain (middle cerebral peduncle and/or medial lemniscus) and pons (ventral and/or dorsal transverse pontine fibers). The CPCT was analyzed in 3 dimensions from the cerebral cortex to the cerebellum. These results could be informative for future studies of motor control in the human brain.

关 键 词:functional magnetic resonance imaging diffusion tensor image corticopontocerebellar tract: motor control: ataxia 

分 类 号:R445.2[医药卫生—影像医学与核医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象