机构地区:[1]Proteomics Laboratory, Department of Neurology, First Hospital, Jilin University, Changchun 130021, Jilin Province, China [2]Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang Province, China [3]Second Hospital, Jilin University,-Changchun 130041, Jilin Province, China
出 处:《Neural Regeneration Research》2011年第2期131-135,共5页中国神经再生研究(英文版)
摘 要:Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by its progressive course. The current therapies are aimed at alleviating symptoms by rescuing the unbalanced physiological dopamine metabolism and recovery of damaged neuronal circuits. However, these strategies result in insufficient clinical benefits for many patients and fail to halt disease progression. Therefore, new therapeutic targets could serve as the gateway against PD degeneration. One pathological hallmark of PD is the formation of intracytoplasmic protein inclusions or Lewy bodies, in neurons. Recent studies have suggested that Lewy bodies are formed similarly to aggresomes, and results have supported the concept that the novel cellular organelle, the aggresome, is a cytoprotective response that sequesters and facilitates clearance of potentially toxic protein aggregates. In addition, a-tubulin deacetylase has been shown to regulate aggresome formation and rescue neural cell viability in response to misfolded protein. Therefore, the regulation of aggresome formation to trigger cellular self-protection system could arrest PD progression. The present study discusses research progress related to Lewy bodies, aggresomes, and histone deacetylases, with an emphasis on histone deacetylase 6 and sirtuin type 2.Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by its progressive course. The current therapies are aimed at alleviating symptoms by rescuing the unbalanced physiological dopamine metabolism and recovery of damaged neuronal circuits. However, these strategies result in insufficient clinical benefits for many patients and fail to halt disease progression. Therefore, new therapeutic targets could serve as the gateway against PD degeneration. One pathological hallmark of PD is the formation of intracytoplasmic protein inclusions or Lewy bodies, in neurons. Recent studies have suggested that Lewy bodies are formed similarly to aggresomes, and results have supported the concept that the novel cellular organelle, the aggresome, is a cytoprotective response that sequesters and facilitates clearance of potentially toxic protein aggregates. In addition, a-tubulin deacetylase has been shown to regulate aggresome formation and rescue neural cell viability in response to misfolded protein. Therefore, the regulation of aggresome formation to trigger cellular self-protection system could arrest PD progression. The present study discusses research progress related to Lewy bodies, aggresomes, and histone deacetylases, with an emphasis on histone deacetylase 6 and sirtuin type 2.
关 键 词:Parkinson's disease Lewy body AGGRESOME histone deacetylases a-tubulin deacetylase mini review neural regeneration
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...