检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家测绘局第三地形测量队,哈尔滨150081 [2]江苏省资源环境信息工程重点实验室/中国矿业大学,江苏徐州221008
出 处:《测绘科学》2011年第2期107-109,58,共4页Science of Surveying and Mapping
基 金:西部测图项目;国家自然科学基金重点项目(50534050);国家自然科学基金资助项目(50774080)
摘 要:本文从面向对象的遥感信息提取中的尺度效应研究入手,对影像对象的分形维数、紧凑度、面积、均值、标准差和与邻域均值差分等特征进行了实验。在此基础上,根据"类内同质性大,类间异质性大"的最佳分类原则,提出了面向对象的RMAS方法,该方法的思想是,当对象RMAS值最大时,对象内部的异质性最小,对象外部的异质性最大,此时的分割尺度为类别提取的最优分割尺度。根据最优尺度下信息提取精度最高的原理,实验验证了该方法的可行性,且能获得较好的分类结果。From scale effect problem in the remote sensing information extraction, the targets' fractal dimensions, compact ratios areas, mean value, standard deviation and mean differential to neighbors of image objects were experimental researched in the paper. It found that these index values of all targets would fluctuate with scales, and different targets in the images have different feature Yalues and scales. It is necessary to extract the region of interest in optimal scale images. In view of this, RMAS method was developed, according to the best classification principle as "homogeneity in class, heterogeneity between classes" . The thought of this method was that the heterogeneity in class is the minimum and is the maximum between classes when RMAS is the maximum, so the segmentation scale is optimal. According to the principle of the highest information extraction accuracy based on the optimal scale, the experiment verified the feasibility of this method and the classification result was better.
关 键 词:高空间分辨率遥感 面向对象 多尺度分割 尺度效应 最优尺度
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.51.7