检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵莲[1] 张锦水[2,1] 胡潭高[1] 陈联裙[1] 李乐[1]
机构地区:[1]北京师范大学资源学院,北京100875 [2]农业部资源遥感与数字农业重点开放实验室,北京100081
出 处:《国土资源遥感》2011年第1期66-72,共7页Remote Sensing for Land & Resources
基 金:农业部资源遥感与数字农业重点实验室开放基金项目(编号:RDA0807);国家高技术研究发展计划资助项目(编号:2006AA120103、2006AA120101)共同资助
摘 要:针对线性混合像元分解(Linear Spectral Unmixing,LSU)在端元(Endmember)个数不变情况下常会出现端元分解过剩现象导致分解结果精度不高的问题,以地物分布的聚集性特征为基础,提出了基于格网的变端元线性混合像元分解(Dynamic Endmember LSU,DELSU)方法。以冬小麦为研究目标,采用Landsat TM图像为实验数据、高分QuickBird图像目视解译冬小麦结果为真值精度评价数据,利用本文提出的DELSU方法进行冬小麦提取。实验结果表明:该方法比最大似然方法、LSU方法更能准确地获取冬小麦面积,在一定程度上吸收了传统分类方法的优点,提高了目标地物的测量精度;同时作为一种改进的LSU方法也适用于其他土地利用/覆盖类型的测量。Linear spectral unmixing (LSU)is the most common method for solving mixed pixel problem; nevertheless, if the number of the pixels' endmember is regarded as unchangeable, the traditional pixel unmixing algorithm cannot attain a good result. In the light of the characteristic that pixels usually have the same composition as their neighboring pixels, the authors proposed a grid - based dynamic endmember linear spectral unmixing (DELSU) model. The land cover classification experiment was conducted with the adoption of the Landsat TM image as the experimental data. The abundance map of winter wheat derived from the visual interpretation of the QuickBird image was used for accuracy evaluation. The experimental results show that the use of the DELSU model could extract the area of winter wheat at a precision higher than that of the traditional maximum likelihood method and the LSU model. This model absorbs the traditional classification advantages and improves the measurement accuracy of the target features. As an improved method of LSU, DELSU is also applicable to the measurement of other land use/cover types.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249