检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张云[1,2] 王小伟[2] 葛蔚[2] 杨朝合[1]
机构地区:[1]中国石油大学重质油加工国家重点实验室,山东青岛266555 [2]中国科学院过程工程研究所多相复杂系统国家重点实验室,北京100190
出 处:《计算机与应用化学》2011年第3期265-269,共5页Computers and Applied Chemistry
基 金:国家自然科学基金资助项目(20821092,20906091);中澳合作资助项目(KJCX3-SYW-S01)
摘 要:近年来,随着统一计算设备构架(CUDA)的出现,高端图形处理器(GPU)在图像处理、计算流体力学等科学计算领域的应用得到了快速发展。属于介观数值方法的格子Boltzmann方法(LBM)是1种新的计算流体力学(CFD)方法,具有算法简单、能处理复杂边界条件、压力能够直接求解等优势,在多相流、湍流、渗流等领域得到了广泛应用。LBM由于具有内在的并行性,特别适合在GPU上计算。采用多松弛时问模型(MRT)的LBM,受松弛因子的影响较小并且数值稳定性较好。本文实现了MRT-LBM在基于CUDA的GPU上的计算,并通过计算流体力学经典算例——二维方腔流来验证计算的正确性。在雷诺数Re=[10,10^4]之间,计算了多达26种雷诺数的算例,并将Re=10^2,4×10^2,10^3,2×10^3,5×10^3,7.5x10^3算例对应的主涡中心坐标与文献中结果进行了对比。计算结果与文献数值实验符合较好,从而验证了算法实现的正确忡,并显示出MRT-LBM具有更优的数值稳定性。奉文还分析了在GPU上MRT-LBM的计算性能并与CPU的计算进行了比较,结果表明,GPU可以极大椭栅mMR下TRM的计簋。NvTDIA Tesla C2050相对于单核Intel Xeon 5430 CPU的加速比约为60倍。In recent years, with the release of compute unified device architecture (CUDA), high-performance graphical processing units (GPU) have been widely applied to computational science areas, such as computational fluid dynamics, besides the traditional image processing. Lattice Boltzmann method (LBM), as a mesoscopic numerical method, is an alternative technique for computational fluid dynamics (CFD). It has many advantages including simplicity, handling complicated boundary conditions easily and solving pressure directly, which makes it widely applied to many fields, such as multiphase flows, turbulence and flows in porous media. LBM is also very suitable to be implemented on GPUs due to its natural parallelism. LBM with the relaxation-time models of multi-relaxation-time (MRT) is less affected by relaxation factor and posses better numerical stability. In this paper, LBM-MRT is implemented on GPU based on CUDA and the implementation was validated by the classical two-dimensional cavity flow. Altogether 26 cases were calculated with the Reynolds numbers ranging from 10 to 10^4. The center coordinates of main vortex in the cases with the Reynolds numbers Re=10^2, 4×10^2, 10^3, 2×10^3, 5×10^3, 7.5×10^3 have been compared with the results reported in literatures. The simulation results not only agree well with previous conclusions but also show good numerical stability. The performance of MRT-LBM on GPU was analyzed and compared with that of CPU. The results indicate that with an NVIDIA Tesla C2050, a nearly 60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved.
关 键 词:格子BOLTZMANN方法 多松弛时间模型 方腔流 GPU
分 类 号:TQ015.9[化学工程] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222