改进的人工蜂群算法性能  被引量:45

Performance of an improved artificial bee colony algorithm

在线阅读下载全文

作  者:胡珂[1] 李迅波[1] 王振林[1] 

机构地区:[1]电子科技大学机械电子工程学院,成都611731

出  处:《计算机应用》2011年第4期1107-1110,共4页journal of Computer Applications

摘  要:为克服人工蜂群算法容易陷入局部最优解的缺点,提出一种新的改进型人工蜂群算法。首先,利用数学中的外推技巧定义了新的位置更新公式,由此构造出一种具有引导趋势的蜂群算法;其次,为了克服算法在进化后期位置相似度高、更新速度慢的缺陷,将微调机制引入算法中,讨论摄动因子范围,由此提高算法在可行区域内的局部搜索能力。最后通过3个基准函数仿真测试,结果表明:与常规算法相较,改进后在搜索性能和精度方面均有明显提高。An improved algorithm based on Artificial Bee Colony(ABC) algorithm was proposed to solve the problem that traditional ABC algorithm is inclined to fall into local optima.In the first stage,the improved ABC algorithm was derived from the skills of extrapolation in mathematics to update the new location of ABC.In the second stage,in order to overcome the deficiency of high position similarity in later stage of evolution and slow renewal rate and enhance the ability of local search in feasible region,a fine-tuning mechanism was introduced to ABC.Simultaneously,the effect of convergence subjected to different perturbation factors was discussed.Finally,the simulation results in three benchmark functions show that the proposed algorithm has better performance than traditional algorithm in search ability and accuracy.

关 键 词:群体智能 人工蜂群 优化 摄动因子 基准函数 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象