检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《化学进展》2011年第2期264-274,共11页Progress in Chemistry
基 金:国家自然科学基金项目(No.20873085);国家高技术发展计划(863)项目(No.2006AA03Z232);国家重点基础研究发展计划(973)项目(No.2007CB209700)资助
摘 要:硅基负极材料具有最高的储锂容量和较低的电压平台,是最具潜力的下一代锂离子电池负极材料之一。然而,硅负极巨大的体积效应、较低的电导率以及与常规电解液的不相容性限制了其商业化应用。目前,提高硅负极性能的措施主要包括:通过设计硅基负极材料的组成和微观结构来抑制其体积变化并改善导电性,研发适于硅负极的粘结剂和电解液添加剂,探索新型集流体及电极结构等。其中改进活性硅基材料的主要措施有纳米化、复合化等。本文论述了近年来硅基复合材料研究领域的一些最新进展和研究热点,阐述了本课题组在此领域的一些工作;讨论了硅-非金属复合材料、硅-金属复合材料各自存在的技术瓶颈并展望其未来发展方向。Silicon is one of the most attractive anode materials for lithium ion batteries on account of its low discharge potential and the highest theoretical capacity for lithium storage. However, the large volume effect, poor electronic conductivity and incompatibility with the conventional electrolyte hinder its commercial applications. So far, strategies to overcome these hinders include designing the composition and microstructure of silicon active materials to suppress the volume change and improve the conductivity, developing new binders and electrolyte additives and exploring new current collectors and suitable electrode structures. There are mainly two methods to improve the silicon active materials. One is to decrease the scale of active Si domain to nanoscale, the other is to fabricate the composite structures. This paper summarizes the recent progress in silicon based composite materials, including Si-nonmetal composites and Si-metal composites, as well as some researches of our group, and discusses the technological bottlenecks and development trends.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33