Intercomparison of Humidity and Temperature Sensors:GTS1, Vaisala RS80, and CFH  被引量:22

Intercomparison of Humidity and Temperature Sensors: GTS1, Vaisala RS80, and CFH

在线阅读下载全文

作  者:卞建春 陈洪滨 Holger VMEL 段云俊 宣越健 吕达仁 

机构地区:[1]Key Laboratory of Middle Atmosphere and Global Environment Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences [2]GRUAN Lead Center, Meteorologisches Observatorium Lindenberg,German Weather Service [3]Kunming National Reference Climatological Station

出  处:《Advances in Atmospheric Sciences》2011年第1期139-146,共8页大气科学进展(英文版)

基  金:supported by the CAS Knowledge Innovation Project (Grant No KZCX22-YW-207);the National Basic Research Program of China (Grant No 2010CB428602);the National Natural Science Foundation of China (Grant Nos 40830102 and 40775030)

摘  要:GTS1 digital radiosonde, developed by the Shanghai Changwang Meteorological Science and Technology Company in 1998, is now widely used in operational radiosonde stations in China. A preliminary comparison of simultaneous humidity measurements by the GTS1 radiosonde, the Vaisala RS80 radiosonde, and the Cryogenic Frostpoint Hygrometer (CFH), launched at Kunming in August 2009, reveals a large dry bias produced by the GTS1 humidity sensor. The average relative dry bias is in the order of 10% below 500 hPa, increasing rapidly to 30% above 500 hPa, and up to 55% at 310 hPa. A much larger dry bias is observed in the daytime, and this daytime effect increases with altitude. The GTS1 radiosonde fails to respond to humidity changes in the upper troposphere, and sometimes even in the middle troposphere. The failure of GTS1 in the middle and upper troposphere will result in significant artificial humidity shifts in radiosonde climate records at stations in China where a transition from mechanical to digital radiosondes has occurred. A comparison of simultaneous temperature observations by the GTS1 radiosonde and the Vaisala RS80 radiosonde suggests that these two radiosondes provide highly reproducible temperature measurements in the troposphere, but produce opposite biases for daytime and nighttime measurements in the stratosphere. In the stratosphere, the GTS1 shows a warm bias (〈0.5 K) in the daytime and a relatively large cool bias (-0.2 K to -1.6 K) at nighttime.GTS1 digital radiosonde, developed by the Shanghai Changwang Meteorological Science and Technology Company in 1998, is now widely used in operational radiosonde stations in China. A preliminary comparison of simultaneous humidity measurements by the GTS1 radiosonde, the Vaisala RS80 radiosonde, and the Cryogenic Frostpoint Hygrometer (CFH), launched at Kunming in August 2009, reveals a large dry bias produced by the GTS1 humidity sensor. The average relative dry bias is in the order of 10% below 500 hPa, increasing rapidly to 30% above 500 hPa, and up to 55% at 310 hPa. A much larger dry bias is observed in the daytime, and this daytime effect increases with altitude. The GTS1 radiosonde fails to respond to humidity changes in the upper troposphere, and sometimes even in the middle troposphere. The failure of GTS1 in the middle and upper troposphere will result in significant artificial humidity shifts in radiosonde climate records at stations in China where a transition from mechanical to digital radiosondes has occurred. A comparison of simultaneous temperature observations by the GTS1 radiosonde and the Vaisala RS80 radiosonde suggests that these two radiosondes provide highly reproducible temperature measurements in the troposphere, but produce opposite biases for daytime and nighttime measurements in the stratosphere. In the stratosphere, the GTS1 shows a warm bias (〈0.5 K) in the daytime and a relatively large cool bias (-0.2 K to -1.6 K) at nighttime.

关 键 词:GTS1 radiosonde humidity dry bias 

分 类 号:P412.1[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象