Neuron PI control for semi-active suspension system of tracked vehicle  被引量:2

Neuron PI control for semi-active suspension system of tracked vehicle

在线阅读下载全文

作  者:曾谊晖 刘少军 鄂加强 

机构地区:[1]College of Mechanical and Electrical Engineering,Central South University [2]Computer Numerical Control Tooling Center,Hunan International Economics University [3]College of Mechanical and Vehicle Engineering,Hunan University

出  处:《Journal of Central South University》2011年第2期444-450,共7页中南大学学报(英文版)

基  金:Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, China;Project(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China

摘  要:A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude, pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%, and 45.2% for the pitch angle, 38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%, the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.

关 键 词:tracked vehicle magneto rheological damper semi-active suspension preview technology neuron PI control 

分 类 号:TD424[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象