检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Central South University》2011年第2期490-498,共9页中南大学学报(英文版)
基 金:Project(2008AA01A201) supported the National High-tech Research and Development Program of China;Projects(60833004, 60633050) supported by the National Natural Science Foundation of China
摘 要:Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall', due to limited capacity of local storage, limited bandwidth and long latency for memory access. Aiming at this problem, a parallelization approach was proposed with six memory optimization schemes for CG, four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20, the parallelization approach can reach up to 21 and 133 times speedups with size A and B, respectively, compared with single power processor element. Finally, the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV, simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.
关 键 词:multi-core processor NAS parallelization CG memory optimization
分 类 号:TP332[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249