基于个体状态的粒子群优化算法  

Particle Swarm Optimization Algorithm Based on Individual State

在线阅读下载全文

作  者:于泳海[1] 韩金仓[2] 

机构地区:[1]兰州商学院陇桥学院信息管理系,兰州730101 [2]兰州商学院信息工程学院,兰州730020

出  处:《计算机工程》2011年第5期190-192,共3页Computer Engineering

基  金:国家自然科学基金资助项目(10961001)

摘  要:针对标准粒子群算法的种群多样性丧失和算法早熟收敛问题,借鉴自然界中群居动物个体行为的独立性特征,提出粒子的个体状态概念,给出一种基于微粒个体状态和状态迁移的粒子群优化算法。对典型函数测试结果的比较表明,改进后算法的寻优能力明显高于标准粒子群算法。与其他改进算法相比,该算法的寻优能力也较强。Concerning the fact that the standard Particle Swarm Optimization(PSO) algorithm has the problem of population diversity lose and premature convergence,using the feature of independent individual behavior of social animals in nature for reference,this paper proposes the concept of individual state.A Particle Swarm Optimization(PSO) algorithm based on individual state and state transition is proposed and tested with several typical benchmark functions.The result indicates that the algorithm is significantly superior to standard PSO in performance of optimization.Compared with other improved algorithms,it is also excellent in performance of optimization.

关 键 词:粒子群优化算法 个体状态 全局优化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象