生产能力约束条件下的柔性作业车间调度优化  被引量:29

Flexible job-shop scheduling optimization based on improved genetic algorithm

在线阅读下载全文

作  者:张铁男[1,2] 韩兵[2] 于渤[1] 

机构地区:[1]哈尔滨工业大学管理学院,哈尔滨150001 [2]哈尔滨工程大学经济管理学院,哈尔滨150001

出  处:《系统工程理论与实践》2011年第3期505-511,共7页Systems Engineering-Theory & Practice

基  金:国家自然科学基金(70672086);教育部博士点基金(20070217068);黑龙江省博士后基金(LRB06-390)

摘  要:柔性作业车间调度问题是经典作业车间调度问题的深化,为解决实际生产系统中作业车间调度资源受限问题提供了方案.从生产能力约束条件出发构建柔性作业车间调度模型,以最大完工时间最小和最大机器负荷最小为目标函数,并提出了基于此的改进遗传算法.该算法采用基于工序和基于机器相结合的编码机制,利用改进多父代交叉算子和多点变异进行遗传操作,在充分保留父代优良基因的同时保证了种群的多样性,克服了传统遗传算法易于早熟或收敛慢的缺点.最后,通过仿真和比较实验,验证了该算法优化生产能力约束条件下柔性车间调度问题的可行性和有效性.Flexible job-shop scheduling problem (FJSP) under the condition of production capacity constraint is the deepening of classic JSP, and it provides the specific measures to solve the problem of resources limiting of job-shop scheduling in practical production system. FJSP model is established under the condition of production capacity constraint, takes minimizing maximum finishing time and minimizing maximum machine burden as objective function, and proposes improved genetic Mgorithm (IGA) based on that. IGA applies the coding mechanism combining with operation-based coding and machine-based mechanism, uses improved multi-previous generation crossover operators and multi-point preservative crossover to conduct genetic operation, and overcomes the shortcoming of early mature and slow constringency of classic genetic algorithm with retaining excellent previous generation at the same time. Finally, this paper uses emulation and comparison experiment to verify the feasibility and effectiveness of this algorithm in optimizing FJSP under the condition of production capacity constraint.

关 键 词:改进遗传算法 生产能力约束 柔性作业车间调度 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象