检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001 [2]青岛科技大学信息科学与技术学院,青岛266035
出 处:《模式识别与人工智能》2010年第6期856-861,共6页Pattern Recognition and Artificial Intelligence
基 金:国家973计划项目(No.2007CB311100);国家863计划重点项目(No.2006AA010103)资助
摘 要:在网络应用环境下,需要处理的音频数据和注册说话人急剧增加,传统说话人辨识方法难以满足实时性要求.文中提出采用K-L散度的说话人模型聚类方法,从而构造一个分级辨识模型,提高辨识效率.研究利用类辨识信息估计置信度的方法,可尽早有效排除集外说话人.实验结果显示,文中方法可使辨识速度平均提高3.2倍,而闭集辨识错误率平均只有0.9%的增加.采用类辨识置信度进一步提高开集辨识速度,并且在保持集内错误率不变的情况下,使集外错误率相对下降5.1%.With the increase of enrolled speakers and audio data to be recognized,the conventional speaker identification methods can not meet the real-time demand for internet application environment.A K-L divergence based speaker model clustering method is proposed to construct a hierarchical identification system,which remarkably improves the recognition efficiency.Moreover,the confidence measure using class-level identification information is also investigated to effectively exclude out-of-set speaker as early as possible.The experimental results show the proposed method averagely increases the identification speed by 3.2 times while the error rate of closed-set identification only increases about 0.9% compared with the conventional method.The open-set identification can be speeded up by using class-level confidence measure and a relatively 5.1% error rate reduction can be achieved on out-of-set speakers identification while keeping the identification performance of in-set speakers unchanged.
关 键 词:K-L散度 模型聚类 置信度 说话人辨识 网络环境
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.19.165