PERIODICAL PRESSURE-DRIVEN FLOWS IN MICROCHANNEL WITH WALL SLIP VELOCITY AND ELECTRO-VISCOUS EFFECTS  被引量:2

PERIODICAL PRESSURE-DRIVEN FLOWS IN MICROCHANNEL WITH WALL SLIP VELOCITY AND ELECTRO-VISCOUS EFFECTS

在线阅读下载全文

作  者:WANG Lei WU Jian-kang 

机构地区:[1]Department of Mechanics, Huazhong University of Science and Technology, National Laboratory forOptoelectronics, Wuhan 430074, China

出  处:《Journal of Hydrodynamics》2010年第6期829-837,共9页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No. 50805059)

摘  要:In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjected to a joint action of wall slip and electro-viscosity is an important topic. An analytical solution for the periodical pressure-driven flow in a two-dimensional uniform microchannel, with consideration of wall slip and electro-viscous effect is obtained based on the Poisson-Boltzmann equation for the Electric Double Layer (EDL) and the Navier-Stokes equations for the liquid flow. The analytic solutions agree well with the numerical solutions. The analytical results indicate that the periodical flow velocity and the Flow-Induced Electric Field (FIEF) strongly depend on the frequency Reynolds number (Re = (wh2/v ), that is a function of the frequency, the channel size and the kinetic viscosity of fluids. For Re 〈 1, the flow velocity and the FIEF behave similarly to those in a steady flow, whereas they decrease rapidly with Re as Re 〉 1. In addition, the electro-viscous effect greatly influences the periodical flow velocity and the FIEF, particularly, when the electrokinetic radius kH is small. Furthermore, the wall slip velocity amplifies the FIEF and enhances the electro-viscous effect on the flow.In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjected to a joint action of wall slip and electro-viscosity is an important topic. An analytical solution for the periodical pressure-driven flow in a two-dimensional uniform microchannel, with consideration of wall slip and electro-viscous effect is obtained based on the Poisson-Boltzmann equation for the Electric Double Layer (EDL) and the Navier-Stokes equations for the liquid flow. The analytic solutions agree well with the numerical solutions. The analytical results indicate that the periodical flow velocity and the Flow-Induced Electric Field (FIEF) strongly depend on the frequency Reynolds number (Re = (wh2/v ), that is a function of the frequency, the channel size and the kinetic viscosity of fluids. For Re 〈 1, the flow velocity and the FIEF behave similarly to those in a steady flow, whereas they decrease rapidly with Re as Re 〉 1. In addition, the electro-viscous effect greatly influences the periodical flow velocity and the FIEF, particularly, when the electrokinetic radius kH is small. Furthermore, the wall slip velocity amplifies the FIEF and enhances the electro-viscous effect on the flow.

关 键 词:electrokinetic flow frequency Reynolds number wall slip electro-viscous effects Flow-Induced Electric Field (FIEF) 

分 类 号:TQ028.8[化学工程] TL334[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象