Design of switched linear systems in the presence of actuator saturation and L-infinity disturbances  被引量:1

Design of switched linear systems in the presence of actuator saturation and L-infinity disturbances

在线阅读下载全文

作  者:Liang LU Zongli LIN Haijun FANG 

机构地区:[1]Department of Automation, Shanghai/iao Tong University, Shanghai 200030, China [2]Department of Electrical and Computer Engineering, University of Virginia, P.O. Box 400743, Charlottesville, VA 22904-4743, USA [3]MKS Instrument, 100 Highpower Road, Rochester, NY 14623, USA

出  处:《控制理论与应用(英文版)》2010年第3期333-343,共11页

摘  要:This paper considers the problem of disturbance tolerance/rejection of a switched system resulting from a family of linear systems subject to actuator saturation and E-infinity disturbances. For a given set of linear feedback gains, a given switching scheme and a given bound on the E-infinity norm of the disturbances, conditions are established, in terms of linear or bilinear matrix inequalities, under which a set of a certain form is invariant for a given switched linear system in the presence of actuator saturation and E-infinity disturbances, and the closed-loop system possesses a certain level of disturbance rejection capability. With these conditions, the design of feedback gains and switching scheme can be formulated and solved as constrained optimization problems. Disturbance tolerance is measured by the largest bound on the disturbances for which the trajectories starting from a given set remain bounded. Disturbance rejection is measured either by the E-infinity norm of the system output or by the system's ability to steer its state into and/or keep it within a small neighborhood of the origin. In the event that all systems in the family are identical, the switched system reduces to a single system under a switching feedback law. Simulation results show that such a single system under a switching feedback law could have stronger disturbance tolerance/rejection capability than a single linear feedback law can.This paper considers the problem of disturbance tolerance/rejection of a switched system resulting from a family of linear systems subject to actuator saturation and E-infinity disturbances. For a given set of linear feedback gains, a given switching scheme and a given bound on the E-infinity norm of the disturbances, conditions are established, in terms of linear or bilinear matrix inequalities, under which a set of a certain form is invariant for a given switched linear system in the presence of actuator saturation and E-infinity disturbances, and the closed-loop system possesses a certain level of disturbance rejection capability. With these conditions, the design of feedback gains and switching scheme can be formulated and solved as constrained optimization problems. Disturbance tolerance is measured by the largest bound on the disturbances for which the trajectories starting from a given set remain bounded. Disturbance rejection is measured either by the E-infinity norm of the system output or by the system's ability to steer its state into and/or keep it within a small neighborhood of the origin. In the event that all systems in the family are identical, the switched system reduces to a single system under a switching feedback law. Simulation results show that such a single system under a switching feedback law could have stronger disturbance tolerance/rejection capability than a single linear feedback law can.

关 键 词:Actuator saturation Disturbance rejection Disturbance tolerance L-infinity performance Set invariance Switched systems 

分 类 号:TP271[自动化与计算机技术—检测技术与自动化装置] TP13[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象