机构地区:[1]Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China [2]Graduate University of Chinese Academy of Sciences, Beijing 100049, China 3College of Life Sciences, Shanxi Normal University, Linfen 041004, China [3]College of Life Sciences, Shanxi Normal University, Linfen 041004, China
出 处:《Genomics, Proteomics & Bioinformatics》2010年第4期229-237,共9页基因组蛋白质组与生物信息学报(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No. 30900831)
摘 要:Plant non-specific lipid transfer proteins (nsLtps) have been reported to be involved in plant defense activity against bacterial and fungal pathogens. In this study, we identified 135 (122 putative and 13 previously identified) Solanaceae nsLtps, which are clustered into 8 different groups. By comparing with Boutrot’s nsLtp classification, we classified these eight groups into five types (I, II, IV, IX and X). We compared Solanaceae nsLtps with Arabidopsis and Gramineae nsLtps and found that (1) Types I, II and IV are shared by Solanaceae, Gramineae and Arabidopsis; (2) Types III, V, VI and VIII are shared by Gramineae and Arabidopsis but not detected in Solanaceae so far; (3) Type VII is only found in Gramineae whereas type IX is present only in Arabidopsis and Solanaceae; (4) Type X is a new type that accounts for 52.59% Solanaceae nsLtps in our data, and has not been reported in any other plant so far. We further built and compared the three-dimensional structures of the eight groups, and found that the major functional diversification within the nsLtp family could be predated to the monocot/dicot divergence, and many gene duplications and sequence variations had happened in the nsLtp family after the monocot/dicot divergence, especially in Solanaceae.Plant non-specific lipid transfer proteins (nsLtps) have been reported to be involved in plant defense activity against bacterial and fungal pathogens. In this study, we identified 135 (122 putative and 13 previously identified) Solanaceae nsLtps, which are clustered into 8 different groups. By comparing with Boutrot’s nsLtp classification, we classified these eight groups into five types (I, II, IV, IX and X). We compared Solanaceae nsLtps with Arabidopsis and Gramineae nsLtps and found that (1) Types I, II and IV are shared by Solanaceae, Gramineae and Arabidopsis; (2) Types III, V, VI and VIII are shared by Gramineae and Arabidopsis but not detected in Solanaceae so far; (3) Type VII is only found in Gramineae whereas type IX is present only in Arabidopsis and Solanaceae; (4) Type X is a new type that accounts for 52.59% Solanaceae nsLtps in our data, and has not been reported in any other plant so far. We further built and compared the three-dimensional structures of the eight groups, and found that the major functional diversification within the nsLtp family could be predated to the monocot/dicot divergence, and many gene duplications and sequence variations had happened in the nsLtp family after the monocot/dicot divergence, especially in Solanaceae.
关 键 词:nsLtp family SOLANACEAE phylogenetic analysis three-dimensional structure
分 类 号:Q943.2[生物学—植物学] S432.23[农业科学—植物病理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...