煤矿火区启封后复燃预测的BP神经网络模型  被引量:20

Prediction Model for Reignition of Fire Zone After Unsealing Based on BP Neural Networks

在线阅读下载全文

作  者:周福宝[1,2] 李金海[1] 

机构地区:[1]中国矿业大学安全工程学院,江苏徐州221116 [2]中国矿业大学煤炭资源与安全开采国家重点实验室,江苏徐州221008

出  处:《采矿与安全工程学报》2010年第4期494-498,504,共6页Journal of Mining & Safety Engineering

基  金:国家自然科学基金项目(50604014);教育部新世纪优秀人才项目(NCET-08-0838);煤炭资源与安全开采国家重点实验室开放基金项目(09KF11)

摘  要:煤矿井下火区启封时需要预测是否发生复燃现象,目前复燃的预测手段仅仅依赖于人工经验分析,存在智能性不足的问题,预测结果的可靠性较低.为此,结合煤自燃的内因(煤自燃倾向性)和自燃指标气体CO,CO2,O2,C2H4,C2H2,提出了一种基于BP网络的多参数火区复燃预测方法,并建立了预测模型.应用表明,该网络模型收敛速度快,预测效果理想,可以准确预测火区复燃的可能性,将其应用于复燃预测是可行的,具有较好的应用前景.The prediction of reignition phenomenon need to be done when the fire zone is unsealed.The present prediction methods just depend on gas analyses with experience which have the problems of insufficient intelligence and low prediction reliability.Therefore,combined with the internal cause of coal spontaneous combustion,the coal spontaneous combustion tendency,and spontaneous index gases such as CO,CO2,O2,C2H4 and C2H2,a multi-parameter prediction model with reignition in fire zone based on BP neural networks was put forward and built.The application showed that this network model with a satisfactory prediction results had a fast convergence speed.The possibility of reignition in fire zone could be predicted accurately.The model was feasible to be applied to reignition prediction and had a good application prospects.

关 键 词:复燃预测 BP网络模型 人工智能 多参数模型 

分 类 号:TD752.1[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象