检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lin XIE Fang Gui WANG Yan TIAN
机构地区:[1]Department of Mathematics,Sichuan Normal University, Sichuan 610068, P. R. China
出 处:《Journal of Mathematical Research and Exposition》2011年第2期337-346,共10页数学研究与评论(英文版)
基 金:Supported by the National Natural Science Foundation of China (Grant No. 10671137);Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060636001)
摘 要:Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.43.130