基于多重分割捆绑特征的目标图像检索  

Bundling features with multiple segmentations for object-based image retrieval

在线阅读下载全文

作  者:王金德[1] 寿黎但[1] 李晓燕[1] 陈刚[1] 

机构地区:[1]浙江大学计算机科学与技术学院,浙江杭州310027

出  处:《浙江大学学报(工学版)》2011年第2期259-266,共8页Journal of Zhejiang University:Engineering Science

基  金:国家自然科学基金资助项目(60803003;61003050;60970124);浙江省科技计划项目重大科技攻关资助项目(2006c11108)

摘  要:针对基于目标的图像检索(OBIR)领域中,传统的视觉关键词方法忽略了局部特征之间的空间关系信息,导致检索准确度不高的问题,提出一种基于多重分割捆绑特征的目标图像检索方法.通过对图像进行多重分割,各分割区块用它所包含的尺度不变特征变换(SIFT)特征集合来描述,生成包含空间关系信息的捆绑特征;根据视觉关键词词库匹配捆绑特征,并提出一种改进的相似性度量方法计算捆绑特征相似度,再将该相似度作为权重融入到视觉关键词方法的向量空间模型中,计算图像相似度并进行排序.结果表明,该方法能够有效利用局部特征之间的空间关系信息,在保证检索效率的同时,显著提高检索准确度.In the area of object-based image retrieval,the traditional visual words(VW) based methods neglected the spatial relationship among local features,resulting in the low accuracy.To overcome this problem,a novel method of bundling features with multiple segmentations was proposed.In our method,images were multiple segmented,and all segmentations were described by SIFT features fallen inside the area to generate bundling features.The bundling features were matched based on the VW vocabulary.An improved similarity metric was presented to measure the similarity between matched bundling features,and the degree of similarity was infused into the vector space model of VW method,to calculate the image similarity.Experiments show that the proposed method can exploit the space relationships among local features,and improve the retrieval accuracy greatly with no significant reduction in the efficiency.

关 键 词:目标图像检索 捆绑特征 多重分割 视觉关键词 尺度不变特征变换 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象